CROUSE-HINDS SERIES

DB10 loudspeaker range up to 15 Watts

Ex de, weatherproof

Overview

This range of loudspeakers, intended for use in potentially explosive gas atmospheres, has a power rating of up to 15 Watts and is suitable for use in gas groups IIB plus hydrogen and IIC. The flamepaths, flare and body, are manufactured from a UV stable glass reinforced polyester. Stainless steel screws and mounting stirrup are incorporated to ensure a corrosion-free product.

Features

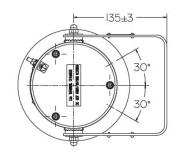
- Zone 1, Zone 2 & non-Ex use
- Ex de IIB + H₂ or IIC T4/T5/T6
- ATEX certified, Ex II 2G
- IECEx certified, Gb
- CCOE certified
- DNV type approved (IEC 60945)
- IP66 and IP67
- Certified temperature: -50°C to
- GRP corrosion-free flamepath
- 115dB(A) at 15 Watts at 1 metre
- 8 & 15 Watt versions

- Power tappings via integral transformer
- Ratcheted swivel mounting stirrup
- Fitted with 316L stainless steel fixtures
- Earth continuity available
- Retained cover screws
- Internal earth stud fitted as standard

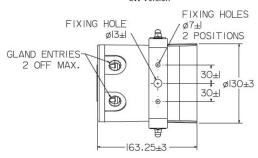
Eaton
Unit B, Sutton Parkway
Oddicroft Lane
Sutton in Ashfield
United Kingdom
NG17 5FB

T: +44 (0) 1623 444 400 www.crouse-hinds.com/hac MEDCSales@Eaton.com © 2024 Eaton All Rights Reserved Printed in UK Publication No.DSMC0035/C May 2024

Eaton is a registered trademark.


All other trademarks are property of their respective owners.

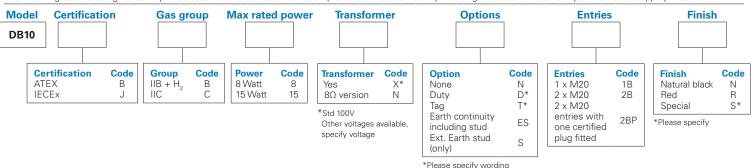
Certifications ATEX Ex de IIB+H, Cert. no. Baseefa11ATEX0101X Certified to: EN60079-0, EN60079-1, EN60079-7 Ex II 2G, Ex de IIB + H, T4/T5/T6 Gb ATEX Ex de IIC Cert. no. Baseefa11ATEX0102X Certified to: EN60079-0, EN60079-1, EN60079-7 Ex II 2G, Ex de IIC T4/T5/T6 Gb IECEx Ex de IIB+H, Cert. no. IECEx BAS 11.0041X Certified to: IEC60079-0, IEC60079-1, IEC60079-7 Ex de IIB + H, T4/T5/T6 Gb Cert. no. IECEx BAS 11.0042X IECEx Ex de IIC Certified to: IEC60079-0, IEC60079-1, IEC60079-7 Ex de IICT4/T5/T6 Gb Type approved DNV (IEC 60945) **Specifications** Body & horn in anti-static, UV stable, glass reinforced polyester Material Mounting stirrup and fixtures in 316L stainless steel Finish All natural or body and horn can be painted to customer specification Rated power 8 & 15 Watts RMS continuous (25°C) Long Flare (15W): 4.5kg Gross weight. 3.6kg Net weight Weight Short Flare (8W): 4kg Gross weight. 3.1kg Net weight IP66 and IP67 Ingress protection Up to 2 x M20 into Ex e chamber **Entries** 8 x 4.0mm² or 4 x 4.0mm² **Terminals** Maximum output for IIB unit @ 1W/1M is 105dB(A) Output Maximum output for IIB unit @ 15W/1M is 115dB(A) Maximum output for IIC unit @ 1W/1M is 98dB(A) Maximum output for IIC unit @ 15W/1M is 107dB(A) Frequency range 400Hz to 8kHz -50°C to + 40°C (T6) Certified temp -50°C to + 55°C (T5) -50°C to + 65°C (T4) Voice coil impedance Fire retardancy GRP is fire retardant to IEC 60695-11-10 Mounting Via stirrup with ratchet facility (supplied fitted) Earth continuity Internal/External earth stud linked to gland continuity Labels Optional stainless steel tag and duty labels Transformer 100V line as standard


General arrangement drawing (all dimensions in mm)

15W version

251.25±3 29±2 A 1 0 ø126±3 Ó ø162.5 1

8W version


Transformer: Used by combining the rated power

80

		tappings below		
	-	T	Power	
	_	Terminals	15 W	8 W
		1:2 (HI)	15.0	8.0
Polar plot		1:3 (HI)	7.5	4.0
DB10 IIB+H ₂ 15W @ 1kHz		1:4 (HI)	3.75	2.0
	Frequency response @ 1W/1m for IIB+H ₂ long flare version	1:2 (LO)	2.5	1.0
350 0 10 00	(1/3 octave pink noise)	1:3 (LO)	1.25	0.5
330 340 350 0 10 20 30	_	1:4 (LO)	0.75	0.25
310 310 310 310 310 310 310 310	110 - 100 - 90 - 100 - 1		2 L0	0 1 0 2 1) 8 terminals (4 x 2), 0 3 10 10 10 10 10 10 1

Ordering requirements

The following code is designed to help in selection of the correct unit. Build up the reference number by inserting the code for each component into the appropriate box

direct 8Ω in to driver